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Abstract 

Predictions of granular flows in the tumbling mill are one of the main challenges in the grinding process. 

Discrete Element Method (DEM) has been widely used for better understanding mechanisms of granular 

materials. However, this method cannot be directly applied in the real industry due to unaffordable 

computational cost associated with detecting and computing contacts. In the work, we propose a 

physics-informed machine learning model based on continuous convolution neural network (CCNN) to 

replace the direct calculation of particle–particle and particle-boundary collisions. The DEM 

simulation was used to generate the training and testing dataset at different rotation speeds. The data 

was used to train the model and test the prediction results. A loss function based on distance was 

instructed to guide model learning. The modelling of a lab scale ball mill demonstrated the accuracy 

and efficiency of the machine learning in comparison with DEM in the simulation of granular flows. 
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network, ball milling 

1. INTRODUCTION

Granular materials, range in size from nanometers to centimeters, are widely used in in many industries 

such as milling, pharmaceuticals, and chemicals (Levy and Kalman, 2001). Understanding granular flow 

behavior is critical for process control and optimizations. However, their collective movements are very 

complex and difficult to predict without considering contact mechanisms. 

Discrete element method (DEM) is a numerical simulation method, has been widely applied in studying 

granular flow (Zhu et al., 2008). It can predict the collective dynamics of the granular flow based on 

simulation of movements of each particle by well-defined contact mechanisms, following Newton’s 

second law. However, its computation cost is unaffordable for full-scale system and long-time scales 

even using existing acceleration methods like GPU parallel computing and coarse-grained method, since 

particle contacts are explicitly resolved with small timesteps. 

Machine learning (ML) could be a complementary technology for numerical simulations of large 

systems. The ML technology, based on large dataset, is capable of strong non-linear approximations and 

rapid predictions. Recently, it has been increasingly applied in the physics mechanism areas, such as 

molecular dynamics, fluid dynamics, and granular materials (Zhu et al., 2022). There are three main 

applications areas where ML can contribute: First, the ML-based data-driven model was used to direct 

rapid predictions of collective dynamics based on process measured data. The advantage of this type of 

model is rapid predictions, easily trained and applications. However, it may sacrifice prediction 

precisions and the model is often back-box with less interpretability. and  Example of this includes but 

not limited to particle size, ball load predictions in the ball milling process (Li et al. 2022), flow regime 

detections in multi-phase flows (Liu and Bai, 2019). Second, the ML technology will improve/accelerate 

the numerical simulation by replacing sub-models or constants/coefficients of computation framework. 

For example, He and Tafti (He and Tafti, 2019) used neural networks to develop more accurate 

predictions of the drag force, replacing the conventional mean drag correlations based on the Reynolds 

number and void functions. Similar contributions in the derivation of drag models for gas–solid flows 

can also be found in (Zhu et al., 2022).  In molecular dynamics, the deep learning models were recently 

applied to replace solving density function theory (DFT) to accelerate MD simulations in 103 scales (Jia 
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et al. 2020). 

Third, emerging physics-informed ML technology can be used to directly simulate particle movements 

and fluid mechanics, which can integrate/learn the classical physics laws, and boundary conditions as 

constraints into the architecture of ML algorithms. The role of such constraints is to teach the ML models 

about the prior knowledge, which can not only greatly improve its approximation ability but also boost 

the interpretability that the ML does not have. For example, Ummenhofer et al. (Ummenhofer et al., 

2019) first proposed a network model based continuous convolution to learn the fluid particle 

movements from Smooth Particle Hydrodynamics (SPH) simulations. The advantage of continuous 

convolution, rather than using traditional graphs-based representations, is taking the fluid as point cloud 

and computing each point’s movements according to spatial convolution kernel in the neighboring area. 

Lu et al. (Lu et al., 2021) applied the continuous convolution neural network (CCNN) to predict granular 

flows in a rotating drum and hopper, replacing the direct time consuming calculation of the particle-

particle and particle-wall contacts in DEM simulation. The model takes the particle positions, velocities, 

and static boundary conditions as model inputs to predict the particle position at next timestep. The 

particle velocity is then updated based on the variations of particle positions over the timestep. Xu and 

Shen (Xu and Shen, 2022) took a further step. They altered the computation framework to instruct the 

CCNN model to predict particle acceleration firstly following Newton’s second law and upgraded the 

model to consider the particle-particle and particle-wall collision separately to have better prediction 

performance in the packing. 

Despite recent pioneer works about machine learning model has shown potentials in understanding 

physics mechanisms and accelerating granular flow simulation, the research in this area is still lacked 

and applications are quite limited. For example, models in literature works (Lu et al., 2021; Xu and 

Shen, 2022) only consider static boundary points, while moving boundaries is more prevalent in real 

process. In addition, these models might only predict particle movements in a very strict operation 

condition and device design, which could not be extrapolated to different conditions (e.g. rotation 

speeds) and large scale. 

In this study, this research is aimed to simulating granular flows by a physics-informed model in the 

milling process. The model used CCNN trained by DEM simulation data, explicitly considering moving 

boundary conditions with different mill rotation speeds. In the following sections, the details of models 

and methods are firstly introduced. Then the results are presented and analyzed. Finally, the applications 

potentials and limitations are discussed. 

2. MODELS AND METHODS

2.1. DEM simulations and data generation 

An in-house developed DEM model was used in the study. The theory and applications of DEM 

modelling have been reviewed extensively and are not discussed in detail here. In this work, the same 

Hertz-Mindlin force model was applied. The force model has been proved effectively in our previous 

work (Wang et al. 2012). 

In the work, particle flows in a horizontal mill of diameter 1m, length 1m was simulated. The mill was 

firstly partially filled with 3000 particles with particle size 50mm and density 2500 kg/m3 and formed a 

stable packing until the average particle velocity is zero at 1.5s. After that, the mill started to rotate at 

different rotation speeds (20 – 60 rpm) and data (particle positions and velocities) were collected each 

10ms until to time 5.5 s. Table 1 shows key parameters in DEM simulations. 

We simulated a total seven cases with different rotation speeds (20 – 60 rpm), where six cases were used 

into training process and one case (30 rpm) was used for validations. Each case had 400 frames (data 

sampling 100 Hz) over the period of 4 s (t = 1.5 s to 5.5 s). 
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2.2. Physics-informed model 

In order to accelerate simulation of particle movements in a rotating drum, it is necessary to integrate 

the mechanistic model from DEM simulations and machine learning model based on knowledge 

established from multiscale study of grinding process. Specifically, Newton’s second laws should be 

incorporated into the framework of physics-informed model. The direct calculation of particle–particle 

and particle-boundary collisions from DEM simulation in a very small timestep will be replaced by the 

machine learning model to approximate particle collisions more quickly in a larger time scale.  

In the model, the intermediate positions and velocities of particles are firstly updated by gravity without 

considering particle-particle and particle wall interactions. Next, the intermediate velocities and 

positions are passed to the model to derive the particle accelerations 𝐚𝑛+1 from the particle-particle and

particle-wall collisions. The predicted acceleration is then used to calculate velocities and positions of 

the next machine learning timestep following the Newton’s second law. 
The key to this computation framework is predictions of accelerations 𝐚𝑒𝑥𝑡

𝑛+1 by the physics-informed

model. Fig. 1 shows the structure of the model. The structure is composed of two parts, namely the 

prediction of particle-particle collision 𝐚𝑝𝑝
𝑛+1 and the particle-wall 𝐚𝑝𝑤

𝑛+1. In each part, there are three

hidden layers.  For the first part (particle-particle collision), the input features include positions, 

velocities of moving particles. In each layer, a combination of continuous convolution and fully 

connected neural network are used to construct 64 latent features, which means the character of each 

moving particle is described by 64 float values (Lu et al., 2021). A ReLU activation function is used to 

transform these features non-linearly, represented as * in Fig. 1. They are then passed to the next layer 

for the next feature operations.  

A similar forward calculation procedure also happens in the second part (particle-wall collision) where 

the input features include velocities of moving particles, positions, normal directions and velocities of 

boundary spheres In the output of layer 1, there are 96 hidden features where 32 features come from 

velocities of moving particles through fully connected network, 32 features come from normal directions 

of boundary particles, and the last 32 comes from velocities of boundary particles. The following feature 

operations in part 2 are exactly same as part1. 

The Cconv in Fig. 1 represents the continuous convolution. For a system with total N particles, the  

continuous convolution at particle positions x is defined as: 

(𝑓 ∗ 𝑔)(𝐱) =  ∑ 𝑎(𝐱𝑖 , 𝐱𝑖𝜖𝑁(𝐱,𝑅) )𝑓𝑖𝑔(Λ(𝐱𝑖 − 𝐱))         (1) 

Where 𝑓𝑖 is the input features of neighbor particle i. For moving particles, the intermediate velocities

and positions are used features. For boundary mesh, mesh positions, velocities, and normal directions 

are used as features. The convolution at position x is based on a set of particles within a radius R around 

x, defined as N(x,R). The contribution of each particle is weighted by a window function: 

𝑎(𝐱𝑖 , 𝐱) =  {
(1 −

‖𝐱𝑖−𝐱‖2
2

𝑅2
)3  ‖𝐱𝑖 − 𝐱‖2 < 𝑅

0      ‖𝐱𝑖 − 𝐱‖2 ≥ 𝑅 
    (2) 

The filter function 𝑔 is a continuous function as the particles move to any location within the simulation 

domain. In practice, the values of this continuous function are stored at discrete locations and linear 

interpolation is used to calculate its values at given location. Λ is a function mapping a unit sphere to a 

unit cube as the filter domain is a sphere while the values of the filter function are stored on regular 

lattices.  FC in Fig. 1 represents fully connected layer. 
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Figure 1 Structure of Physics-informed model (Cconv represents continuous convolutions; FC 

represents fully connected layer; * the ReLU function). 

2.3. training conditions 

The training process was to learn the values of model parameters by minimizing the error between 

network prediction and the ground truth provided by DEM simulation. In the training process, the results 

from every five steps were used to calculate the loss and update the values of the trainable parameters. 

The learning rate decayed with multiple steps from 1.0×10-4 to 2.0×10-6. 

In each training step, the trainer fetched the data of frame n and let the model predict the results of the 

next three frames. A loss function is needed to quantify the error between the predicted results and the 

ground-truth. In the research, a loss function considering particle position errors is proposed to reduce 

the influence of training epochs on the model: 

𝐿𝑛+1 = 
1

𝑁
∑ ‖𝐱𝑖

𝑛+1 − 𝐱̂𝑖
𝑛+1 ‖

2
𝑁
𝑖=1 (3) 

Where n+1 represents frame n+1, N is the number of particles, 𝐱𝑖
𝑛+1 is the predicted position of particle

𝑖, and 𝐱̂𝑖
𝑛+1 is the ground-truth. The first term is the mean square distance loss. It calculates the distance

between predicted positions and ground-truth positions at the particle scale. 

The predicted results of frame n+1 were then used to predict the results of frame n+2. This process was 

repeated until the predefined number of frames was reached. The total loss in this training step was 

calculated as a sum of the loss from all the predicted frames: 

𝐿 =  ∑ 𝑤𝑖𝐿𝑛+𝑖𝐹
𝑖=1   (4) 

Where F = 3 is the total number of frames used to calculate the loss in each training step. 𝑤𝑖 = 1 is the

weighting factor of the loss calculated from frame 𝑛 + 𝑖. 
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3. RESULTS AND DISCUSSIONS

Fig. 2 shows comparisons of flow patterns of granular flow between DEM simulations and the proposed 

physics-informed model after rotation at time 2.5 s . It can be found the flow pattern are similar where 

a thin layer of fast-moving particles (velocity > 1.5 m/s) rolls down the flat surface and small velocity 

particles (< 0.5 m/s) are in the middle of particle flow. 

 (a)                                    (b)     
Figure 2 Flow pattern at time 2.5 s: (a) DEM simulations; (b) Physics-informed model predictions 

Fig. 3a shows evolutions of Angle of Repose (AoR) from time 1.5 s to 5.5 s. The predictions of AoR by 

Physics informed model is consistent with DEM simulations. The AoR starts from 0o (packing) and then 

increase to around 60o and then drops down rapidly due to particle flow avalanche. As rotation time 

goes, the fluctuation is smaller as the particle flow becomes stable and AoR stays at around 35o. Fig. 3b 

shows velocity distributions at time 2.5s. The velocity distributions of physics-informed model are 

consistent with DEM simulations. Most particles have the velocity between 0.5 m/s to 1.0 m/s. 
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Figure 3 (a) Variations of angle of repose t = 1.5 – 5.5 s; (b) velocity distributions at time 2.5 

s. 

4. CONCLUSIONS

We developed a physics-informed model based on continuous convolutions to predict the 

granular flow of ball milling process. The model was trained by DEM simulation data, 

considering moving boundary conditions of the ball mill at different rotation speeds. Results 

show the predicted granular flow was consistent with DEM simulation in terms of AoR and 

velocity analysis. While the proposed model has great potential in accelerating granular flow 

simulation, several obstacles need to be overcome to test the capability in predicting full-scale 
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granular flows in ball milling process. Firstly, the current model only considers the same device 

and same mill loadings. To generate a more applicable model, the model should be trained by 

more cases of different mill loading and larger scale mills. Secondly, dispersed particles and 

steel balls need to be considered in the physics-informed model. Thirdly, the current model can 

only predict mean particle velocity over the time 10ms which cannot reflect the instant particle 

velocity at DEM timestep. A potential mapping model might be developed to generate high-

resolution velocity data based on low-resolution predicted data. 
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