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Abstract 

 
In recent years, India has experienced a considerable loss of lives and properties due to an increase in 

extreme precipitation events as a potential consequence of global warming. In particular, the short-

duration but intense precipitation events have significantly impacted the major Indian cities in the past, 

and the number of such events is rising. In this context, it is critical to assess the design capacity of 

urban drainage networks in order to effectively mitigate the potential disasters caused by heavy 

precipitation in the future. The Intensity-Duration-Frequency (IDF) curve is one such crucial piece of 

information that plays a major role in infrastructure design and reflects the climate change impact on 

the precipitation characteristics. In this study, we have utilized hourly observed precipitation data at 

four metropolitan cities in India, namely Ahmedabad, Kolkata, Mumbai, and Chennai, to analyse the 

change in the IDF relationships between the past and future. The changes in the future are analysed 

based on the simulated outputs from multiple Global Circulation Models (GCMs) of Coupled Model 

Intercomparison Project Phase 5 (CMIP5) and Phase 6 (CMIP6). Two different scenarios for each 

phase have been considered in this study, i.e., RCP4.5, RCP8.5 from CMIP5, and SSP245, SSP585 from 

CMIP6. Apart from quantifying the changes in IDF in the future, this study further provides important 

insight into the comparative assessment between CMIP5 and CMIP6 with respect to the changes in the 

IDF. Outcomes are beneficial for future planning and designing of various hydraulic infrastructures in 

the context of changing climate using the updated IDF relationships. 
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1. INTRODUCTION  

 
The intensity-duration-frequency (IDF) curves quantify the relationship of precipitation intensity with 

its duration and frequency of occurrence and are also essential for designing hydraulic structures like 

urban drainage networks, small bridges, dams, etc. Traditionally, IDF curves are estimated using 

historically observed precipitation data. However, the approach has proven inadequate because of the 

altered spatiotemporal characteristics of extreme precipitation caused by climate change (Asadieh and 

Krakauer 2015; Sun et al 2021). Therefore, to examine potential changes in IDF curves, outputs from 

climate models, such as General Circulation Models (GCMs), Regional Climate Models (RCMs), or 

both, which incorporate different warming and socio-economic scenarios to simulate the future climate 

in global or regional scale have been used in several studies. The World Climate Research Programme 

(WCRP) coordinates international climate research groups to provide outputs from various GCMs based 

on multiple warming and socioeconomic scenarios in various phases such as Climate Model 

Intercomparison Project Phase Phase 3 (CMIP3), Phase 5 (CMIP5), and the most recent Phase 6 

(CMIP6). Multiple studies across the globe indicate changes in IDF curves based on different CMIP. 

For instance, based on GCMs obtained from CMIP3, Kao and Ganguly (2011) showed a 30% 

intensification of global averaged extreme precipitation for the worst-case scenario. Based on CMIP5 
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estimates and scenarios, Chandra et al (2015) and Vu et al (2018) found a 12-53% and 40-45% increase 

in short-duration rainfall intensity in Bengaluru, India, and Bac Ninh, Vietnam, respectively. Maity and 

Maity (2022) used CMIP6 outputs to examine the spatio-temporal changes in the IDF relationship using 

hourly precipitation across India and showed that in the worst-case scenario, an average 40-48% increase 

in the future is expected. Although CMIP6 is the most recent of the three phases, the future scenarios it 

uses are modifications of those used in CMIP5. The future simulations in CMIP5 are performed using 

radiative forcing values from four GHG concentration pathways, known as Representative 

Concentration Pathways (RCPs), whereas CMIP6 uses Shared Socioeconomic Pathways (SSPs) in 

combination with RCP scenarios (Eyring et al., 2016; Taylor et al., 2012). SSP narratives are driven by 

changes in qualitative components in the future, such as demographics, human development, lifestyle, 

policies and institutions, environment, and natural resources, and quantitative components, such as 

population, education, urbanization, and economic development. The aforementioned parameters along 

with RCP forcing scenarios, make the SSPs more robust and meaningful compared to their predecessors 

(O’Neill et al., 2017). 

In this regard, this study examines the differences between the precipitation IDF curves projected by 

CMIP5 and CMIP6 simulations for the future. 

 

2. STUDY AREA AND DATA USED 

 
In this investigation, we used observed hourly precipitation data from the India Meteorological 

Department (IMD) for four cities in India: Ahmedabad (23.07ºN, 72.63ºE), Chennai (13.06ºN, 80.23ºE) 

Kolkata (22.53ºN 88.33ºE), and Mumbai (19.10ºN, 72.85E). These cities were chosen because they 

experience a wide range of climate conditions. One Self-Recording Rain Gauge (SRRG) is selected for 

each city based on the maximum availability of recorded data starting from the year 1969. 

 

The simulated precipitation data for the historical (1969-2005) and future periods (2015-2100) are 

obtained from the WCRP repository for CMIP5 and CMIP6. For the analysis, the period from 1969 to 

2005 (36 years) is chosen as the historical baseline based on observed and simulated data records, and 

the future period is divided into three epochs, namely, 2015-2040 (immediate future), 2041-2070 (near-

future), and 2071-2100. (far-future). Eight GCMs and two scenarios for each CMIP are selected for this 

study. A brief description of the data is presented in Table 1. 

 
Table 1. Description of the GCMs used in the study 

Source Source Institution Model Name Resolution 

C
M

IP
5

 /
 C

M
IP

6
 

 

Bureau of Meteorology and Commonwealth 

Scientific and Commonwealth Industrial 

Research Organisation, Australia 

ACCESS1-0, ACCESS1-3 / 

ACCESS-CM2, ACCESS-

ESM1-5 

1.25◦×1.875◦ 

Beijing Climate Center, China 
BCC-CSM1-1-M / 

BCC-CSM2-MR 
1.12◦×1.12◦ 

Canadian Centre for Climate Modelling and 

Analysis, Canada 

CanESM2 / 

CanESM5 
2.79◦×2.81◦ 

National Center for Atmospheric Research, USA 
CESM1-CAM5 / 

CESM2-WACCM 
0.94◦×1.25◦ 

EC-Earth Consortium 
Ec-Earth / 

Ec-Earth3 

1.12◦×1.12◦/ 

0.70◦×0.70◦ 

Institut Pierre Simon Laplace, France 
IPSL-CM5A-MR / 

IPSL-CM6A-LR 
1.26◦×2.50◦/ 

Max Planck Institute for Meteorology, 

Hamburg, Germany 

MPI-ESM-MR / 

MPI-ESM1-2-HR 

1.86◦×1.87◦/ 

0.93◦×0.93◦ 

3. METHODOLOGY 

 
Before proceeding with the analysis, the simulated precipitation data from all the GCMs and scenarios 
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are extracted for the specified latitude and longitude values of all the stations applying the inverse 

distance weighting interpolation method. The simulated precipitation data are then corrected for bias 

against the observed daily data using a mixed distribution-based Quantile Mapping (QM) technique 

(Shin et al., 2019) that uses both Gamma and Gumbel distributions to correct the bias in mean and 

extreme precipitation (values above the 95th percentile) for all stations considering each scenario. Next, 

the Annual Maximum Series (AMS) of precipitation intensity is extracted over moving windows of 1, 

3, 6, 12, and 24 hours from the observed hourly data for each station. Generalized Extreme Value (GEV) 

distribution is fitted to the extracted AMS using the method of L-moments (Hosking, 1990). In the same 

manner, GEV distribution is fitted to the daily AMS extracted from the GCM simulated future data 

considering all the epochs and scenarios for each GCMs separately. Kolmogorov-Smirnov (K-S) test is 

used to check the goodness-of-fit. Finally scale-invariance method is used to construct IDF curve at a 

sub-daily scale from a daily scale (Yeo et al., 2021). Scale invariance implies that extreme precipitation 

statistics for different durations are proportional to one another and belong to the same distribution 

family. Mathematically it can be expressed in terms of moments of the distribution as: 

 

E[f(t)q] = λ-θ(q) E[f(λt) q]              (1) 

 

here f(t) and f(t) have same distribution.  is the scale factor (e.g. if t=24 hr, t =1 hr, then =1/24) and 

θ is the scaling exponent. Scaling properties of extreme precipitation are shown by the log-linearity 

between the Non-Central Moments (NCMs) and durations and the existence of simple scaling is shown 

by the linear relationship between scaling exponent (θ) and order of moments (q). The scaling properties 

of GEV distribution can be shown as: 

F(i)=exp [-(1+κ((i-α)/β)) -1/κ ]  for κ ≠ 0          (2) 

κ(λt) = κ(t)               (3) 

β(λt) = λθ β(t) (4)  

α(λt) = λθ α(t)    (5) 

IT(λt) = λθ IT(t)                                                                                                                                    (6)    

The location, scale, and shape parameters are expressed by α, β, and κ, respectively. The precipitation 

intensity of over a T-year return period, denoted by IT can be expressed as the inverse of the CDF of 

GEV distribution function, which is written as follows: 

IT=α-β/κ (1-[-ln(1-1/T)]-κ )            (7) 

The ratio of first-order NCMs of daily and sub-daily duration can be used to estimate the parameter λθ 

and it is written as: 

λθ = μ1 (λt)/μ1 (t)              (8) 

1(t) and 1(t) are the first-order NCMs for sub-daily and daily scale. 

Finally, IDF curves are generated for all the cities using three different future epochs and two different 

scenarios for each GCM from CMIP5 and CMIP6 and compared to the historical IDF. 

 

4. RESULTS AND DISCUSSION 

 
The model simulated precipitation data of historical and future periods are bias corrected using the 

mixed-distribution based QM approach with sufficient accuracy (Absolute Percentage Bias in Multi-

model Ensemble of daily AMS is reduced to the range of 2-39% from 38-71% considering all the cities 

for baseline period) for the cities of Ahmedabad, Chennai, Kolkata, Mumbai, considering 1969-2005 as 

the base period. As the entire analysis is based on extreme precipitation events the results of the bias 

correction are shown in terms of mean bias in daily AMS. The comparison is shown in Table 2. 

At 5% significance level, the one sample K-S test does not reject the null hypothesis that the data comes 

from GEV distribution fitted to all the AMS extracted from observed and bias-corrected simulated data 

using the method of L-moments. The existence of a scaling relationship between 24-hour and 1-hour 

extreme precipitation for all the cities are established by high R2 values of the log-log plot between the 

NCMs and the duration of precipitation. The strong linearity as shown by high R2 values between the 

scaling exponent and order of moments indicates the simple scaling relationship (Ahmedabad: 0.9997, 
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Chennai: 0.9985, Kolkata: 0.9977). After obtaining sub-daily precipitation intensity, future IDF curves 

are constructed using the Multi-Model Ensemble (MME) mean approach and compared with historical.  

The results show that Kolkata, Ahmedabad and Chennai will see more increase in precipitation intensity 

in an hourly-scale than daily scale in the far future. However, in the case of Mumbai, the increment in 

hourly intensity is comparatively lower than in other cities. The observations are similar for both CMIP5 

and CMIP6 as evident from Figure 1. 
 

Table 2. Bias in terms of mean and standard deviation (Std. dev.) of Daily AMS for the period (1969-2005) 

 

 CMIP5 CMIP6 

City 

Bias in Raw Multi-

model 

Ensemble(mm) 

 

Bias in Corrected 

Multi-model 

Ensemble 

 (mm) 

Bias in Raw Multi-

model Ensemble 

(mm) 

Bias in Corrected 

Multi-model 

Ensemble 

(mm) 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Ahmedabad -89.16 -53.82 18.01 15.01 -88.89 -48.82 6.21 13.13 

Chennai -87.96 -41.88 45.28 22.97 -76.24 -33.94 39.48 14.71 

Kolkata -53.74 -29.07 22.09 4.1870 -46.81 -23.95 15.95 -4.05 

Mumbai -142.01 -42.88 6.86 34.65 -118.05 -31.33 -5.88 12.78 

 

 
 

Figure 1. IDF curves for the historical period (1969-2005) and future period (Far-future, ep3: 2071-2100) 

for four Indian cities considering a 100-year return period. 

 
The changes in precipitation intensity with different durations vary significantly across CMIPs and 

return periods. Hourly precipitation increases with an increasing return period for Ahmedabad, Chennai, 

and Kolkata when compared to daily precipitation. However, the hourly precipitation increment in 

Mumbai decreases with return period, whereas daily precipitation increases. Although both CMIPs show 

a similar pattern of increase for both scenarios, CMIP6 dominates for Ahmedabad and Kolkata, while 

CMIP5 dominates for Chennai and Mumbai. These variations could be due to the spatiotemporal 

variation of the socioeconomic and warming-related assumptions used in the SSP scenarios. Extreme 

precipitation is expected to increase in the near future (2041-2070) as well. The increase ranges from 

60-245% in CMIP5 and CMIP6. In the future (100-year return period), Ahmedabad and Kolkata will 

have a 195% rise in hourly precipitation, while Chennai will see a 175% increase. In Mumbai, extreme 

daily precipitation increases by 90%. In conjunction with longer return periods, extreme rainfall with 
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short return periods (e.g. 2-, 5-year) is also rising. Such an increase signifies more frequent flash flood 

situations and waterlogging in the future. Figure 2 depicts the comparison graphically. Regardless of the 

differences caused by the different scenarios, the results clearly show that hourly extremes will become 

more frequent and intense in the future which calls for a sustainable development approach to mitigate 

the urban flooding arising as an impact of such extreme events. 

 

 
Figure 2. IDF curves for historical period (1969-2005) and future period (Far-future, ep3: 2071-2100) for 

four Indian cities considering 100-year return period. 

 

Apart from global warming, the changing Land Use Land Cover (LULC) scenario can also lead to rapid 

accumulation of water in urban areas with a comparatively smaller rainfall intensity (Abdulkareem et al 

2018). So, a comprehensive study to identify the effects of both criteria is essential before planning and 

designing water infrastructures. 

 

5. CONCLUSIONS 

The findings of this study indicate a significant increase in extreme precipitation intensity across the 

selected cities in the near- and far future. The increment range varies between 60-245% across different 

scenarios of CMIP5 and CMIP6. Considering all scenarios, Ahmedabad and Kolkata will experience 

almost a 195% increase in hourly precipitation in the future (100-year return period), whereas, for 

Chennai, it is approximately 175%. However, for Mumbai maximum increase is observed for extreme 

daily precipitation (≈90%). Irrespective of the variation in the IDF curve, the overall result indicates a 

need to consider such change in precipitation characteristics to adapt to the adverse effects of increasing 

extreme precipitation caused by climate change. Different bias-correction methods and multiple station 

data should be considered to reduce the cost of infrastructure design and execution arising from data 

uncertainty. Overall, we expect that this analysis will be helpful for future planning and design of various 

hydraulic infrastructures in the context of climate change. 
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